1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
//! RustType is a pure Rust alternative to libraries like FreeType.
//!
//! The current capabilities of RustType:
//!
//! * Reading TrueType formatted fonts and font collections. This includes
//! `*.ttf` as well as a subset of `*.otf` font files.
//! * Retrieving glyph shapes and commonly used properties for a font and its
//! glyphs.
//! * Laying out glyphs horizontally using horizontal and vertical metrics, and
//! glyph-pair-specific kerning.
//! * Rasterising glyphs with sub-pixel positioning using an accurate analytical
//! algorithm (not based on sampling).
//! * Managing a font cache on the GPU with the `gpu_cache` module. This keeps
//! recently used glyph renderings in a dynamic cache in GPU memory to
//! minimise texture uploads per-frame. It also allows you keep the draw call
//! count for text very low, as all glyphs are kept in one GPU texture.
//!
//! Notable things that RustType does not support *yet*:
//!
//! * OpenType formatted fonts that are not just TrueType fonts (OpenType is a
//! superset of TrueType). Notably there is no support yet for cubic Bezier
//! curves used in glyphs.
//! * Font hinting.
//! * Ligatures of any kind.
//! * Some less common TrueType sub-formats.
//! * Right-to-left and vertical text layout.
//!
//! # Getting Started
//!
//! To hit the ground running with RustType, look at the `simple.rs` example
//! supplied with the crate. It demonstrates loading a font file, rasterising an
//! arbitrary string, and displaying the result as ASCII art. If you prefer to
//! just look at the documentation, the entry point for loading fonts is
//! `FontCollection`, from which you can access individual fonts, then their
//! glyphs.
//!
//! # Glyphs
//!
//! The glyph API uses wrapper structs to augment a glyph with information such
//! as scaling and positioning, making relevant methods that make use of this
//! information available as appropriate. For example, given a `Glyph` `glyph`
//! obtained directly from a `Font`:
//!
//! ```no_run
//! # use rusttype::*;
//! # let glyph: Glyph<'static> = unimplemented!();
//! // One of the few things you can do with an unsized, positionless glyph is get its id.
//! let id = glyph.id();
//! let glyph = glyph.scaled(Scale::uniform(10.0));
//! // Now glyph is a ScaledGlyph, you can do more with it, as well as what you can do with Glyph.
//! // For example, you can access the correctly scaled horizontal metrics for the glyph.
//! let h_metrics = glyph.h_metrics();
//! let glyph = glyph.positioned(point(5.0, 3.0));
//! // Now glyph is a PositionedGlyph, and you can do even more with it, e.g. drawing.
//! glyph.draw(|x, y, v| {}); // In this case the pixel values are not used.
//! ```
//!
//! # Unicode terminology
//!
//! This crate uses terminology for computerised typography as specified by the
//! Unicode standard. If you are not sure of the differences between a code
//! point, a character, and a glyph, you may want to check the [official Unicode
//! glossary](http://unicode.org/glossary/), or alternatively, here's my take on
//! it from a practical perspective:
//!
//! * A character is what you would conventionally call a single symbol,
//! independent of its appearance or representation in a particular font.
//! Examples include `a`, `A`, `ä`, `å`, `1`, `*`, `Ω`, etc.
//! * A Unicode code point is the particular number that the Unicode standard
//! associates with a particular character. Note however that code points also
//! exist for things not conventionally thought of as characters by
//! themselves, but can be combined to form characters, such as diacritics
//! like accents. These "characters" are known in Unicode as "combining
//! characters". E.g., a diaeresis (`¨`) has the code point U+0308. If this
//! code point follows the code point U+0055 (the letter `u`), this sequence
//! represents the character `ü`. Note that there is also a single codepoint
//! for `ü`, U+00FC. This means that what visually looks like the same string
//! can have multiple different Unicode representations. Some fonts will have
//! glyphs (see below) for one sequence of codepoints, but not another that
//! has the same meaning. To deal with this problem it is recommended to use
//! Unicode normalisation, as provided by, for example, the
//! [unicode-normalization](http://crates.io/crates/unicode-normalization)
//! crate, to convert to code point sequences that work with the font in
//! question. Typically a font is more likely to support a single code point
//! vs. a sequence with the same meaning, so the best normalisation to use is
//! "canonical recomposition", known as NFC in the normalisation crate.
//! * A glyph is a particular font's shape to draw the character for a
//! particular Unicode code point. This will have its own identifying number
//! unique to the font, its ID.
#![allow(
clippy::cognitive_complexity,
clippy::doc_markdown,
clippy::cast_lossless,
clippy::many_single_char_names
)]
#![cfg_attr(not(feature = "std"), no_std)]
extern crate alloc;
mod geometry;
mod rasterizer;
#[cfg(all(feature = "libm-math", not(feature = "std")))]
mod nostd_float;
#[cfg(feature = "gpu_cache")]
pub mod gpu_cache;
pub use crate::geometry::{point, vector, Curve, Line, Point, Rect, Vector};
use approx::relative_eq;
use core::fmt;
use stb_truetype as tt;
#[cfg(not(feature = "has-atomics"))]
use alloc::rc::Rc as Arc;
#[cfg(feature = "has-atomics")]
use alloc::sync::Arc;
#[cfg(all(feature = "libm-math", not(feature = "std")))]
use crate::nostd_float::FloatExt;
#[cfg(not(feature = "std"))]
use alloc::{boxed::Box, vec::Vec};
/// A collection of fonts read straight from a font file's data. The data in the
/// collection is not validated. This structure may or may not own the font
/// data.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `FontCollection<'static>`
/// covers most cases ie both dynamically loaded owned data and for referenced
/// compile time font data.
#[derive(Clone, Debug)]
pub struct FontCollection<'a>(SharedBytes<'a>);
/// A single font. This may or may not own the font data.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `Font<'static>` covers most
/// cases ie both dynamically loaded owned data and for referenced compile time
/// font data.
///
/// # Example
///
/// ```
/// # use rusttype::{Font, Error};
/// # fn example() -> Result<(), Error> {
/// let font_data: &[u8] = include_bytes!("../dev/fonts/dejavu/DejaVuSansMono.ttf");
/// let font: Font<'static> = Font::from_bytes(font_data)?;
///
/// let owned_font_data: Vec<u8> = font_data.to_vec();
/// let from_owned_font: Font<'static> = Font::from_bytes(owned_font_data)?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct Font<'a> {
info: tt::FontInfo<SharedBytes<'a>>,
}
impl fmt::Debug for Font<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Font")
}
}
/// `SharedBytes` handles the lifetime of font data used in RustType. The data
/// is either a shared reference to externally owned data, or managed by
/// reference counting. `SharedBytes` can be conveniently used with `From` and
/// `Into`, and dereferences to the contained bytes.
///
/// # Lifetime
/// The lifetime reflects the font data lifetime. `SharedBytes<'static>` covers
/// most cases ie both dynamically loaded owned data and for referenced compile
/// time font data.
#[derive(Clone, Debug)]
pub enum SharedBytes<'a> {
ByRef(&'a [u8]),
ByArc(Arc<[u8]>),
}
impl<'a> core::ops::Deref for SharedBytes<'a> {
type Target = [u8];
fn deref(&self) -> &[u8] {
match *self {
SharedBytes::ByRef(bytes) => bytes,
SharedBytes::ByArc(ref bytes) => &**bytes,
}
}
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes: &[u8] = &[0u8, 1, 2, 3];
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, bytes);
/// ```
impl<'a> From<&'a [u8]> for SharedBytes<'a> {
fn from(bytes: &'a [u8]) -> SharedBytes<'a> {
SharedBytes::ByRef(bytes)
}
}
/// ```
/// # use rusttype::SharedBytes;
/// # use std::sync::Arc;
/// let bytes: Arc<[u8]> = vec![0u8, 1, 2, 3].into();
/// let shared: SharedBytes = Arc::clone(&bytes).into();
/// assert_eq!(&*shared, &*bytes);
/// ```
impl From<Arc<[u8]>> for SharedBytes<'static> {
fn from(bytes: Arc<[u8]>) -> SharedBytes<'static> {
SharedBytes::ByArc(bytes)
}
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes: Box<[u8]> = vec![0u8, 1, 2, 3].into();
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, &[0u8, 1, 2, 3]);
/// ```
impl From<Box<[u8]>> for SharedBytes<'static> {
fn from(bytes: Box<[u8]>) -> SharedBytes<'static> {
SharedBytes::ByArc(bytes.into())
}
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes = vec![0u8, 1, 2, 3];
/// let shared: SharedBytes = bytes.into();
/// assert_eq!(&*shared, &[0u8, 1, 2, 3]);
/// ```
impl From<Vec<u8>> for SharedBytes<'static> {
fn from(bytes: Vec<u8>) -> SharedBytes<'static> {
SharedBytes::ByArc(bytes.into())
}
}
/// ```
/// # use rusttype::SharedBytes;
/// let bytes = vec![0u8, 1, 2, 3];
/// let shared: SharedBytes = (&bytes).into();
/// assert_eq!(&*shared, &bytes as &[u8]);
/// ```
impl<'a, T: AsRef<[u8]>> From<&'a T> for SharedBytes<'a> {
fn from(bytes: &'a T) -> SharedBytes<'a> {
SharedBytes::ByRef(bytes.as_ref())
}
}
/// Represents a Unicode code point.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Codepoint(pub u32);
/// Represents a glyph identifier for a particular font. This identifier will
/// not necessarily correspond to the correct glyph in a font other than the
/// one that it was obtained from.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct GlyphId(pub u32);
/// A single glyph of a font. this may either be a thin wrapper referring to the
/// font and the glyph id, or it may be a standalone glyph that owns the data
/// needed by it.
///
/// A `Glyph` does not have an inherent scale or position associated with it. To
/// augment a glyph with a size, give it a scale using `scaled`. You can then
/// position it using `positioned`.
#[derive(Clone)]
pub struct Glyph<'a> {
inner: GlyphInner<'a>,
}
impl fmt::Debug for Glyph<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Glyph").field("id", &self.id().0).finish()
}
}
#[derive(Clone)]
enum GlyphInner<'a> {
Proxy(Font<'a>, u32),
Shared(Arc<SharedGlyphData>),
}
#[derive(Debug)]
pub struct SharedGlyphData {
pub id: u32,
pub extents: Option<Rect<i32>>,
pub scale_for_1_pixel: f32,
pub unit_h_metrics: HMetrics,
pub shape: Option<Vec<tt::Vertex>>,
}
/// The "horizontal metrics" of a glyph. This is useful for calculating the
/// horizontal offset of a glyph from the previous one in a string when laying a
/// string out horizontally.
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
pub struct HMetrics {
/// The horizontal offset that the origin of the next glyph should be from
/// the origin of this glyph.
pub advance_width: f32,
/// The horizontal offset between the origin of this glyph and the leftmost
/// edge/point of the glyph.
pub left_side_bearing: f32,
}
#[derive(Copy, Clone, Debug, PartialEq, PartialOrd)]
/// The "vertical metrics" of a font at a particular scale. This is useful for
/// calculating the amount of vertical space to give a line of text, and for
/// computing the vertical offset between successive lines.
pub struct VMetrics {
/// The highest point that any glyph in the font extends to above the
/// baseline. Typically positive.
pub ascent: f32,
/// The lowest point that any glyph in the font extends to below the
/// baseline. Typically negative.
pub descent: f32,
/// The gap to leave between the descent of one line and the ascent of the
/// next. This is of course only a guideline given by the font's designers.
pub line_gap: f32,
}
impl From<tt::VMetrics> for VMetrics {
fn from(vm: tt::VMetrics) -> Self {
Self {
ascent: vm.ascent as f32,
descent: vm.descent as f32,
line_gap: vm.line_gap as f32,
}
}
}
impl core::ops::Mul<f32> for VMetrics {
type Output = VMetrics;
fn mul(self, rhs: f32) -> Self {
Self {
ascent: self.ascent * rhs,
descent: self.descent * rhs,
line_gap: self.line_gap * rhs,
}
}
}
/// A glyph augmented with scaling information. You can query such a glyph for
/// information that depends on the scale of the glyph.
#[derive(Clone)]
pub struct ScaledGlyph<'a> {
g: Glyph<'a>,
api_scale: Scale,
scale: Vector<f32>,
}
impl fmt::Debug for ScaledGlyph<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ScaledGlyph")
.field("id", &self.id().0)
.field("scale", &self.api_scale)
.finish()
}
}
/// A glyph augmented with positioning and scaling information. You can query
/// such a glyph for information that depends on the scale and position of the
/// glyph.
#[derive(Clone)]
pub struct PositionedGlyph<'a> {
sg: ScaledGlyph<'a>,
position: Point<f32>,
bb: Option<Rect<i32>>,
}
impl fmt::Debug for PositionedGlyph<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PositionedGlyph")
.field("id", &self.id().0)
.field("scale", &self.scale())
.field("position", &self.position)
.finish()
}
}
/// Defines the size of a rendered face of a font, in pixels, horizontally and
/// vertically. A vertical scale of `y` pixels means that the distance betwen
/// the ascent and descent lines (see `VMetrics`) of the face will be `y`
/// pixels. If `x` and `y` are equal the scaling is uniform. Non-uniform scaling
/// by a factor *f* in the horizontal direction is achieved by setting `x` equal
/// to *f* times `y`.
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Scale {
/// Horizontal scale, in pixels.
pub x: f32,
/// Vertical scale, in pixels.
pub y: f32,
}
impl Scale {
/// Uniform scaling, equivalent to `Scale { x: s, y: s }`.
#[inline]
pub fn uniform(s: f32) -> Scale {
Scale { x: s, y: s }
}
}
/// A trait for types that can be converted into a `GlyphId`, in the context of
/// a specific font.
///
/// Many `rusttype` functions that operate on characters accept values of any
/// type that implements `IntoGlyphId`. Such types include `char`, `Codepoint`,
/// and obviously `GlyphId` itself.
pub trait IntoGlyphId {
/// Convert `self` into a `GlyphId`, consulting the index map of `font` if
/// necessary.
fn into_glyph_id(self, _: &Font<'_>) -> GlyphId;
}
impl IntoGlyphId for char {
fn into_glyph_id(self, font: &Font<'_>) -> GlyphId {
GlyphId(font.info.find_glyph_index(self as u32))
}
}
impl IntoGlyphId for Codepoint {
fn into_glyph_id(self, font: &Font<'_>) -> GlyphId {
GlyphId(font.info.find_glyph_index(self.0))
}
}
impl IntoGlyphId for GlyphId {
#[inline]
fn into_glyph_id(self, _font: &Font<'_>) -> GlyphId {
self
}
}
impl<'a> FontCollection<'a> {
/// Constructs a font collection from an array of bytes, typically loaded
/// from a font file, which may be a single font or a TrueType Collection
/// holding a number of fonts. This array may be owned (e.g. `Vec<u8>`), or
/// borrowed (`&[u8]`). As long as `From<T>` is implemented for `Bytes` for
/// some type `T`, `T` can be used as input.
///
/// This returns an error if `bytes` does not seem to be font data in a
/// format we recognize.
pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<FontCollection<'a>, Error> {
let bytes = bytes.into();
// We should use tt::is_collection once it lands in stb_truetype-rs:
// https://github.com/redox-os/stb_truetype-rs/pull/15
if !tt::is_font(&bytes) && &bytes[0..4] != b"ttcf" {
return Err(Error::UnrecognizedFormat);
}
Ok(FontCollection(bytes))
}
/// If this `FontCollection` holds a single font, or a TrueType Collection
/// containing only one font, return that as a `Font`. The `FontCollection`
/// is consumed.
///
/// If this `FontCollection` holds multiple fonts, return a
/// `CollectionContainsMultipleFonts` error.
///
/// If an error occurs, the `FontCollection` is lost, since this function
/// takes ownership of it, and the error values don't give it back. If that
/// is a problem, use the `font_at` or `into_fonts` methods instead, which
/// borrow the `FontCollection` rather than taking ownership of it.
pub fn into_font(self) -> Result<Font<'a>, Error> {
let offset = if tt::is_font(&self.0) {
0
} else if tt::get_font_offset_for_index(&self.0, 1).is_some() {
return Err(Error::CollectionContainsMultipleFonts);
} else {
// We now know that either a) `self.0` is a collection with only one
// font, or b) `get_font_offset_for_index` found data it couldn't
// recognize. Request the first font's offset, distinguishing
// those two cases.
match tt::get_font_offset_for_index(&self.0, 0) {
None => return Err(Error::IllFormed),
Some(offset) => offset,
}
};
let info = tt::FontInfo::new(self.0, offset as usize).ok_or(Error::IllFormed)?;
Ok(Font { info })
}
/// Gets the font at index `i` in the font collection, if it exists and is
/// valid. The produced font borrows the font data that is either borrowed
/// or owned by this font collection.
pub fn font_at(&self, i: usize) -> Result<Font<'a>, Error> {
let offset = tt::get_font_offset_for_index(&self.0, i as i32)
.ok_or(Error::CollectionIndexOutOfBounds)?;
let info = tt::FontInfo::new(self.0.clone(), offset as usize).ok_or(Error::IllFormed)?;
Ok(Font { info })
}
/// Converts `self` into an `Iterator` yielding each `Font` that exists
/// within the collection.
pub fn into_fonts(self) -> IntoFontsIter<'a> {
IntoFontsIter {
collection: self,
next_index: 0,
}
}
}
pub struct IntoFontsIter<'a> {
next_index: usize,
collection: FontCollection<'a>,
}
impl<'a> Iterator for IntoFontsIter<'a> {
type Item = Result<Font<'a>, Error>;
fn next(&mut self) -> Option<Self::Item> {
let result = self.collection.font_at(self.next_index);
if let Err(Error::CollectionIndexOutOfBounds) = result {
return None;
}
self.next_index += 1;
Some(result)
}
}
impl<'a> Font<'a> {
/// Constructs a font from an array of bytes, this is a shortcut for
/// `FontCollection::from_bytes` for collections comprised of a single font.
pub fn from_bytes<B: Into<SharedBytes<'a>>>(bytes: B) -> Result<Font<'a>, Error> {
FontCollection::from_bytes(bytes).and_then(|c| c.into_font())
}
/// The "vertical metrics" for this font at a given scale. These metrics are
/// shared by all of the glyphs in the font. See `VMetrics` for more detail.
pub fn v_metrics(&self, scale: Scale) -> VMetrics {
let vm = self.info.get_v_metrics();
let scale = self.info.scale_for_pixel_height(scale.y);
VMetrics::from(vm) * scale
}
/// Get the unscaled VMetrics for this font, shared by all glyphs.
/// See `VMetrics` for more detail.
pub fn v_metrics_unscaled(&self) -> VMetrics {
VMetrics::from(self.info.get_v_metrics())
}
/// Returns the units per EM square of this font
pub fn units_per_em(&self) -> u16 {
self.info.units_per_em()
}
/// The number of glyphs present in this font. Glyph identifiers for this
/// font will always be in the range `0..self.glyph_count()`
pub fn glyph_count(&self) -> usize {
self.info.get_num_glyphs() as usize
}
/// Returns the corresponding glyph for a Unicode code point or a glyph id
/// for this font.
///
/// If `id` is a `GlyphId`, it must be valid for this font; otherwise, this
/// function panics. `GlyphId`s should always be produced by looking up some
/// other sort of designator (like a Unicode code point) in a font, and
/// should only be used to index the font they were produced for.
///
/// Note that code points without corresponding glyphs in this font map to
/// the ".notdef" glyph, glyph 0.
pub fn glyph<C: IntoGlyphId>(&self, id: C) -> Glyph<'a> {
let gid = id.into_glyph_id(self);
assert!((gid.0 as usize) < self.glyph_count());
// font clone either a reference clone, or arc clone
Glyph::new(GlyphInner::Proxy(self.clone(), gid.0))
}
/// A convenience function.
///
/// Returns an iterator that produces the glyphs corresponding to the code
/// points or glyph ids produced by the given iterator `itr`.
///
/// This is equivalent in behaviour to `itr.map(|c| font.glyph(c))`.
pub fn glyphs_for<I: Iterator>(&self, itr: I) -> GlyphIter<'a, '_, I>
where
I::Item: IntoGlyphId,
{
GlyphIter { font: self, itr }
}
/// Returns an iterator over the names for this font.
pub fn font_name_strings(&self) -> tt::FontNameIter<'_, SharedBytes<'a>> {
self.info.get_font_name_strings()
}
/// A convenience function for laying out glyphs for a string horizontally.
/// It does not take control characters like line breaks into account, as
/// treatment of these is likely to depend on the application.
///
/// Note that this function does not perform Unicode normalisation.
/// Composite characters (such as ö constructed from two code points, ¨ and
/// o), will not be normalised to single code points. So if a font does not
/// contain a glyph for each separate code point, but does contain one for
/// the normalised single code point (which is common), the desired glyph
/// will not be produced, despite being present in the font. Deal with this
/// by performing Unicode normalisation on the input string before passing
/// it to `layout`. The crate
/// [unicode-normalization](http://crates.io/crates/unicode-normalization)
/// is perfect for this purpose.
///
/// Calling this function is equivalent to a longer sequence of operations
/// involving `glyphs_for`, e.g.
///
/// ```no_run
/// # use rusttype::*;
/// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
/// # let font: Font = unimplemented!();
/// font.layout("Hello World!", scale, start)
/// # ;
/// ```
///
/// produces an iterator with behaviour equivalent to the following:
///
/// ```no_run
/// # use rusttype::*;
/// # let (scale, start) = (Scale::uniform(0.0), point(0.0, 0.0));
/// # let font: Font = unimplemented!();
/// font.glyphs_for("Hello World!".chars())
/// .scan((None, 0.0), |&mut (mut last, mut x), g| {
/// let g = g.scaled(scale);
/// if let Some(last) = last {
/// x += font.pair_kerning(scale, last, g.id());
/// }
/// let w = g.h_metrics().advance_width;
/// let next = g.positioned(start + vector(x, 0.0));
/// last = Some(next.id());
/// x += w;
/// Some(next)
/// })
/// # ;
/// ```
pub fn layout<'b>(&'b self, s: &'b str, scale: Scale, start: Point<f32>) -> LayoutIter<'a, 'b> {
LayoutIter {
font: self,
chars: s.chars(),
caret: 0.0,
scale,
start,
last_glyph: None,
}
}
/// Returns additional kerning to apply as well as that given by HMetrics
/// for a particular pair of glyphs.
pub fn pair_kerning<A, B>(&self, scale: Scale, first: A, second: B) -> f32
where
A: IntoGlyphId,
B: IntoGlyphId,
{
let first_id = first.into_glyph_id(self);
let second_id = second.into_glyph_id(self);
let factor = self.info.scale_for_pixel_height(scale.y) * (scale.x / scale.y);
let kern = self.info.get_glyph_kern_advance(first_id.0, second_id.0);
factor * kern as f32
}
}
#[derive(Clone)]
pub struct GlyphIter<'a, 'b, I: Iterator>
where
I::Item: IntoGlyphId,
{
font: &'b Font<'a>,
itr: I,
}
impl<'a, 'b, I: Iterator> Iterator for GlyphIter<'a, 'b, I>
where
I::Item: IntoGlyphId,
{
type Item = Glyph<'a>;
fn next(&mut self) -> Option<Glyph<'a>> {
self.itr.next().map(|c| self.font.glyph(c))
}
}
#[derive(Clone)]
pub struct LayoutIter<'a, 'b> {
font: &'b Font<'a>,
chars: core::str::Chars<'b>,
caret: f32,
scale: Scale,
start: Point<f32>,
last_glyph: Option<GlyphId>,
}
impl<'a, 'b> Iterator for LayoutIter<'a, 'b> {
type Item = PositionedGlyph<'a>;
fn next(&mut self) -> Option<PositionedGlyph<'a>> {
self.chars.next().map(|c| {
let g = self.font.glyph(c).scaled(self.scale);
if let Some(last) = self.last_glyph {
self.caret += self.font.pair_kerning(self.scale, last, g.id());
}
let g = g.positioned(point(self.start.x + self.caret, self.start.y));
self.caret += g.sg.h_metrics().advance_width;
self.last_glyph = Some(g.id());
g
})
}
}
impl<'a> Glyph<'a> {
fn new(inner: GlyphInner<'a>) -> Glyph<'a> {
Glyph { inner }
}
/// The font to which this glyph belongs. If the glyph is a standalone glyph
/// that owns its resources, it no longer has a reference to the font which
/// it was created from (using `standalone()`). In which case, `None` is
/// returned.
pub fn font(&self) -> Option<&Font<'a>> {
match self.inner {
GlyphInner::Proxy(ref f, _) => Some(f),
GlyphInner::Shared(_) => None,
}
}
/// The glyph identifier for this glyph.
pub fn id(&self) -> GlyphId {
match self.inner {
GlyphInner::Proxy(_, id) => GlyphId(id),
GlyphInner::Shared(ref data) => GlyphId(data.id),
}
}
/// Augments this glyph with scaling information, making methods that depend
/// on the scale of the glyph available.
pub fn scaled(self, scale: Scale) -> ScaledGlyph<'a> {
let (scale_x, scale_y) = match self.inner {
GlyphInner::Proxy(ref font, _) => {
let scale_y = font.info.scale_for_pixel_height(scale.y);
let scale_x = scale_y * scale.x / scale.y;
(scale_x, scale_y)
}
GlyphInner::Shared(ref data) => {
let scale_y = data.scale_for_1_pixel * scale.y;
let scale_x = scale_y * scale.x / scale.y;
(scale_x, scale_y)
}
};
ScaledGlyph {
g: self,
api_scale: scale,
scale: vector(scale_x, scale_y),
}
}
/// Turns a `Glyph<'a>` into a `Glyph<'static>`. This produces a glyph that
/// owns its resources, extracted from the font. This glyph can outlive the
/// font that it comes from.
///
/// Calling `standalone()` on a standalone glyph shares the resources, and
/// is equivalent to `clone()`.
pub fn standalone(&self) -> Glyph<'static> {
match self.inner {
GlyphInner::Proxy(ref font, id) => {
Glyph::new(GlyphInner::Shared(Arc::new(SharedGlyphData {
id,
scale_for_1_pixel: font.info.scale_for_pixel_height(1.0),
unit_h_metrics: {
let hm = font.info.get_glyph_h_metrics(id);
HMetrics {
advance_width: hm.advance_width as f32,
left_side_bearing: hm.left_side_bearing as f32,
}
},
extents: font.info.get_glyph_box(id).map(|bb| Rect {
min: point(bb.x0 as i32, -(bb.y1 as i32)),
max: point(bb.x1 as i32, -(bb.y0 as i32)),
}),
shape: font.info.get_glyph_shape(id),
})))
}
GlyphInner::Shared(ref data) => Glyph::new(GlyphInner::Shared(data.clone())),
}
}
/// Get the data from this glyph (such as width, extents, vertices, etc.).
/// Only possible if the glyph is a shared glyph.
pub fn get_data(&self) -> Option<Arc<SharedGlyphData>> {
match self.inner {
GlyphInner::Proxy(..) => None,
GlyphInner::Shared(ref s) => Some(s.clone()),
}
}
}
/// Part of a `Contour`, either a `Line` or a `Curve`.
#[derive(Copy, Clone, Debug)]
pub enum Segment {
Line(Line),
Curve(Curve),
}
/// A closed loop consisting of a sequence of `Segment`s.
#[derive(Clone, Debug)]
pub struct Contour {
pub segments: Vec<Segment>,
}
impl<'a> ScaledGlyph<'a> {
/// The glyph identifier for this glyph.
pub fn id(&self) -> GlyphId {
self.g.id()
}
/// The font to which this glyph belongs. If the glyph is a standalone glyph
/// that owns its resources, it no longer has a reference to the font which
/// it was created from (using `standalone()`). In which case, `None` is
/// returned.
pub fn font(&self) -> Option<&Font<'a>> {
self.g.font()
}
/// A reference to this glyph without the scaling
pub fn into_unscaled(self) -> Glyph<'a> {
self.g
}
/// Removes the scaling from this glyph
pub fn unscaled(&self) -> &Glyph<'a> {
&self.g
}
/// Augments this glyph with positioning information, making methods that
/// depend on the position of the glyph available.
pub fn positioned(self, p: Point<f32>) -> PositionedGlyph<'a> {
let bb = self.pixel_bounds_at(p);
PositionedGlyph {
sg: self,
position: p,
bb,
}
}
pub fn scale(&self) -> Scale {
self.api_scale
}
/// Retrieves the "horizontal metrics" of this glyph. See `HMetrics` for
/// more detail.
pub fn h_metrics(&self) -> HMetrics {
match self.g.inner {
GlyphInner::Proxy(ref font, id) => {
let hm = font.info.get_glyph_h_metrics(id);
HMetrics {
advance_width: hm.advance_width as f32 * self.scale.x,
left_side_bearing: hm.left_side_bearing as f32 * self.scale.x,
}
}
GlyphInner::Shared(ref data) => HMetrics {
advance_width: data.unit_h_metrics.advance_width * self.scale.x,
left_side_bearing: data.unit_h_metrics.left_side_bearing * self.scale.y,
},
}
}
fn shape_with_offset(&self, offset: Point<f32>) -> Option<Vec<Contour>> {
use core::mem::replace;
use stb_truetype::VertexType;
match self.g.inner {
GlyphInner::Proxy(ref font, id) => font.info.get_glyph_shape(id),
GlyphInner::Shared(ref data) => data.shape.clone(),
}
.map(|shape| {
let mut result = Vec::new();
let mut current = Vec::new();
let mut last = point(0.0, 0.0);
for v in shape {
let end = point(
v.x as f32 * self.scale.x + offset.x,
v.y as f32 * self.scale.y + offset.y,
);
match v.vertex_type() {
VertexType::MoveTo if !current.is_empty() => result.push(Contour {
segments: replace(&mut current, Vec::new()),
}),
VertexType::LineTo => current.push(Segment::Line(Line { p: [last, end] })),
VertexType::CurveTo => {
let control = point(
v.cx as f32 * self.scale.x + offset.x,
v.cy as f32 * self.scale.y + offset.y,
);
current.push(Segment::Curve(Curve {
p: [last, control, end],
}))
}
_ => (),
}
last = end;
}
if !current.is_empty() {
result.push(Contour {
segments: replace(&mut current, Vec::new()),
});
}
result
})
}
/// Produces a list of the contours that make up the shape of this glyph.
/// Each contour consists of a sequence of segments. Each segment is either
/// a straight `Line` or a `Curve`.
///
/// The winding of the produced contours is clockwise for closed shapes,
/// anticlockwise for holes.
pub fn shape(&self) -> Option<Vec<Contour>> {
self.shape_with_offset(point(0.0, 0.0))
}
/// The bounding box of the shape of this glyph, not to be confused with
/// `pixel_bounding_box`, the conservative pixel-boundary bounding box. The
/// coordinates are relative to the glyph's origin.
pub fn exact_bounding_box(&self) -> Option<Rect<f32>> {
match self.g.inner {
GlyphInner::Proxy(ref font, id) => font.info.get_glyph_box(id).map(|bb| Rect {
min: point(bb.x0 as f32 * self.scale.x, -bb.y1 as f32 * self.scale.y),
max: point(bb.x1 as f32 * self.scale.x, -bb.y0 as f32 * self.scale.y),
}),
GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
min: point(
bb.min.x as f32 * self.scale.x,
bb.min.y as f32 * self.scale.y,
),
max: point(
bb.max.x as f32 * self.scale.x,
bb.max.y as f32 * self.scale.y,
),
}),
}
}
/// Constructs a glyph that owns its data from this glyph. This is similar
/// to `Glyph::standalone`. See that function for more details.
pub fn standalone(&self) -> ScaledGlyph<'static> {
ScaledGlyph {
g: self.g.standalone(),
api_scale: self.api_scale,
scale: self.scale,
}
}
#[inline]
fn pixel_bounds_at(&self, p: Point<f32>) -> Option<Rect<i32>> {
// Use subpixel fraction in floor/ceil rounding to elimate rounding error
// from identical subpixel positions
let (x_trunc, x_fract) = (p.x.trunc() as i32, p.x.fract());
let (y_trunc, y_fract) = (p.y.trunc() as i32, p.y.fract());
match self.g.inner {
GlyphInner::Proxy(ref font, id) => font
.info
.get_glyph_bitmap_box_subpixel(id, self.scale.x, self.scale.y, x_fract, y_fract)
.map(|bb| Rect {
min: point(x_trunc + bb.x0, y_trunc + bb.y0),
max: point(x_trunc + bb.x1, y_trunc + bb.y1),
}),
GlyphInner::Shared(ref data) => data.extents.map(|bb| Rect {
min: point(
(bb.min.x as f32 * self.scale.x + x_fract).floor() as i32 + x_trunc,
(bb.min.y as f32 * self.scale.y + y_fract).floor() as i32 + y_trunc,
),
max: point(
(bb.max.x as f32 * self.scale.x + x_fract).ceil() as i32 + x_trunc,
(bb.max.y as f32 * self.scale.y + y_fract).ceil() as i32 + y_trunc,
),
}),
}
}
}
impl<'a> PositionedGlyph<'a> {
/// The glyph identifier for this glyph.
pub fn id(&self) -> GlyphId {
self.sg.id()
}
/// The font to which this glyph belongs. If the glyph is a standalone glyph
/// that owns its resources, it no longer has a reference to the font which
/// it was created from (using `standalone()`). In which case, `None` is
/// returned.
pub fn font(&self) -> Option<&Font<'a>> {
self.sg.font()
}
/// A reference to this glyph without positioning
pub fn unpositioned(&self) -> &ScaledGlyph<'a> {
&self.sg
}
/// Removes the positioning from this glyph
pub fn into_unpositioned(self) -> ScaledGlyph<'a> {
self.sg
}
/// The conservative pixel-boundary bounding box for this glyph. This is the
/// smallest rectangle aligned to pixel boundaries that encloses the shape
/// of this glyph at this position. Note that the origin of the glyph, at
/// pixel-space coordinates (0, 0), is at the top left of the bounding box.
pub fn pixel_bounding_box(&self) -> Option<Rect<i32>> {
self.bb
}
/// Similar to `ScaledGlyph::shape()`, but with the position of the glyph
/// taken into account.
pub fn shape(&self) -> Option<Vec<Contour>> {
self.sg.shape_with_offset(self.position)
}
pub fn scale(&self) -> Scale {
self.sg.api_scale
}
pub fn position(&self) -> Point<f32> {
self.position
}
/// Rasterises this glyph. For each pixel in the rect given by
/// `pixel_bounding_box()`, `o` is called:
///
/// ```ignore
/// o(x, y, v)
/// ```
///
/// where `x` and `y` are the coordinates of the pixel relative to the `min`
/// coordinates of the bounding box, and `v` is the analytically calculated
/// coverage of the pixel by the shape of the glyph. Calls to `o` proceed in
/// horizontal scanline order, similar to this pseudo-code:
///
/// ```ignore
/// let bb = glyph.pixel_bounding_box();
/// for y in 0..bb.height() {
/// for x in 0..bb.width() {
/// o(x, y, calc_coverage(&glyph, x, y));
/// }
/// }
/// ```
pub fn draw<O: FnMut(u32, u32, f32)>(&self, o: O) {
use stb_truetype::VertexType;
let shape = match self.sg.g.inner {
GlyphInner::Proxy(ref font, id) => {
font.info.get_glyph_shape(id).unwrap_or_else(Vec::new)
}
GlyphInner::Shared(ref data) => data.shape.clone().unwrap_or_else(Vec::new),
};
let bb = if let Some(bb) = self.bb.as_ref() {
bb
} else {
return;
};
let offset = vector(bb.min.x as f32, bb.min.y as f32);
let mut lines = Vec::new();
let mut curves = Vec::new();
let mut last = point(0.0, 0.0);
for v in shape {
let end = point(
v.x as f32 * self.sg.scale.x + self.position.x,
-v.y as f32 * self.sg.scale.y + self.position.y,
) - offset;
match v.vertex_type() {
VertexType::LineTo => lines.push(Line { p: [last, end] }),
VertexType::CurveTo => {
let control = point(
v.cx as f32 * self.sg.scale.x + self.position.x,
-v.cy as f32 * self.sg.scale.y + self.position.y,
) - offset;
curves.push(Curve {
p: [last, control, end],
})
}
VertexType::MoveTo => {}
}
last = end;
}
rasterizer::rasterize(
&lines,
&curves,
(bb.max.x - bb.min.x) as u32,
(bb.max.y - bb.min.y) as u32,
o,
);
}
/// Constructs a glyph that owns its data from this glyph. This is similar
/// to `Glyph::standalone`. See that function for more details.
pub fn standalone(&self) -> PositionedGlyph<'static> {
PositionedGlyph {
sg: self.sg.standalone(),
bb: self.bb,
position: self.position,
}
}
/// Resets positioning information and recalculates the pixel bounding box
pub fn set_position(&mut self, p: Point<f32>) {
let p_diff = p - self.position;
if relative_eq!(p_diff.x.fract(), 0.0) && relative_eq!(p_diff.y.fract(), 0.0) {
if let Some(bb) = self.bb.as_mut() {
let rounded_diff = vector(p_diff.x.round() as i32, p_diff.y.round() as i32);
bb.min = bb.min + rounded_diff;
bb.max = bb.max + rounded_diff;
}
} else {
self.bb = self.sg.pixel_bounds_at(p);
}
self.position = p;
}
}
/// The type for errors returned by rusttype.
#[derive(Debug)]
pub enum Error {
/// Font data presented to rusttype is not in a format that the library
/// recognizes.
UnrecognizedFormat,
/// Font data presented to rusttype was ill-formed (lacking necessary
/// tables, for example).
IllFormed,
/// The caller tried to access the `i`'th font from a `FontCollection`, but
/// the collection doesn't contain that many fonts.
CollectionIndexOutOfBounds,
/// The caller tried to convert a `FontCollection` into a font via
/// `into_font`, but the `FontCollection` contains more than one font.
CollectionContainsMultipleFonts,
}
impl Error {
fn description(&self) -> &str {
use self::Error::*;
match *self {
UnrecognizedFormat => "Font data in unrecognized format",
IllFormed => "Font data is ill-formed",
CollectionIndexOutOfBounds => "Font collection has no font at the given index",
CollectionContainsMultipleFonts => {
"Attempted to convert collection into a font, \
but collection contais more than one font"
}
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> core::result::Result<(), fmt::Error> {
f.write_str(self.description())
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn description(&self) -> &str {
self.description()
}
}
#[cfg(feature = "std")]
impl std::convert::From<Error> for std::io::Error {
fn from(error: Error) -> Self {
std::io::Error::new(std::io::ErrorKind::Other, error)
}
}