1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
#![warn(clippy::all)]
#![allow(
    clippy::too_many_arguments,
    clippy::cast_lossless,
    clippy::many_single_char_names
)]
#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

use alloc::vec::Vec;
use byteorder::{BigEndian as BE, ByteOrder};
use core::ops::Deref;

#[cfg(not(any(feature = "libm", feature = "std")))]
compile_error!("You need to activate either the `std` or `libm` feature.");

#[cfg(all(feature = "libm", not(feature = "std")))]
trait FloatExt {
    fn floor(self) -> Self;
    fn ceil(self) -> Self;
    fn sqrt(self) -> Self;
}
#[cfg(all(feature = "libm", not(feature = "std")))]
impl FloatExt for f32 {
    #[inline]
    fn floor(self) -> Self {
        libm::floorf(self)
    }
    #[inline]
    fn ceil(self) -> Self {
        libm::ceilf(self)
    }
    #[inline]
    fn sqrt(self) -> Self {
        libm::sqrtf(self)
    }
}

#[derive(Copy, Clone, Debug)]
pub struct FontInfo<Data: Deref<Target = [u8]>> {
    data: Data, // pointer to .ttf file
    // fontstart: usize,       // offset of start of font
    num_glyphs: u32, // number of glyphs, needed for range checking
    loca: u32,
    head: u32,
    glyf: u32,
    hhea: u32,
    hmtx: u32,
    name: u32,
    kern: u32,                // table locations as offset from start of .ttf
    index_map: u32,           // a cmap mapping for our chosen character encoding
    index_to_loc_format: u32, // format needed to map from glyph index to glyph
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[repr(C)]
pub struct Vertex {
    pub x: i16,
    pub y: i16,
    pub cx: i16,
    pub cy: i16,
    type_: u8,
}

impl Vertex {
    pub fn vertex_type(&self) -> VertexType {
        match self.type_ {
            1 => VertexType::MoveTo,
            2 => VertexType::LineTo,
            3 => VertexType::CurveTo,
            type_ => panic!("Invalid vertex type: {}", type_),
        }
    }
}

#[test]
fn test_vertex_type() {
    fn v(type_: VertexType) -> Vertex {
        Vertex {
            x: 0,
            y: 0,
            cx: 0,
            cy: 0,
            type_: type_ as u8,
        }
    }
    assert_eq!(v(VertexType::MoveTo).vertex_type(), VertexType::MoveTo);
    assert_eq!(v(VertexType::LineTo).vertex_type(), VertexType::LineTo);
    assert_eq!(v(VertexType::CurveTo).vertex_type(), VertexType::CurveTo);
}

#[test]
#[should_panic]
fn test_invalid_vertex_type() {
    let v = Vertex {
        x: 0,
        y: 0,
        cx: 0,
        cy: 0,
        type_: 255,
    };
    let s = match v.vertex_type() {
        VertexType::MoveTo => "move to",
        VertexType::LineTo => "line to",
        VertexType::CurveTo => "curve to",
    };
    // With `Vertex::vertex_type` defined as `transmute` this would be undefined
    // behavior:
    println!("{}", s);
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[repr(u8)]
pub enum VertexType {
    MoveTo = 1,
    LineTo = 2,
    CurveTo = 3,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Rect<T> {
    pub x0: T,
    pub y0: T,
    pub x1: T,
    pub y1: T,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct HMetrics {
    pub advance_width: i32,
    pub left_side_bearing: i32,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct VMetrics {
    pub ascent: i32,
    pub descent: i32,
    pub line_gap: i32,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub enum PlatformId {
    // platformID
    Unicode = 0,
    Mac = 1,
    Iso = 2,
    Microsoft = 3,
}
fn platform_id(v: u16) -> Option<PlatformId> {
    use crate::PlatformId::*;
    match v {
        0 => Some(Unicode),
        1 => Some(Mac),
        2 => Some(Iso),
        3 => Some(Microsoft),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
#[allow(non_camel_case_types)]
pub enum UnicodeEid {
    // encodingID for PLATFORM_ID_UNICODE
    Unicode_1_0 = 0,
    Unicode_1_1 = 1,
    Iso_10646 = 2,
    Unicode_2_0_Bmp = 3,
    Unicode_2_0_Full = 4,
}
fn unicode_eid(v: u16) -> Option<UnicodeEid> {
    use crate::UnicodeEid::*;
    match v {
        0 => Some(Unicode_1_0),
        1 => Some(Unicode_1_1),
        2 => Some(Iso_10646),
        3 => Some(Unicode_2_0_Bmp),
        4 => Some(Unicode_2_0_Full),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub enum MicrosoftEid {
    // encodingID for PLATFORM_ID_MICROSOFT
    Symbol = 0,
    UnicodeBMP = 1,
    Shiftjis = 2,
    UnicodeFull = 10,
}
fn microsoft_eid(v: u16) -> Option<MicrosoftEid> {
    use crate::MicrosoftEid::*;
    match v {
        0 => Some(Symbol),
        1 => Some(UnicodeBMP),
        2 => Some(Shiftjis),
        10 => Some(UnicodeFull),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub enum MacEid {
    // encodingID for PLATFORM_ID_MAC; same as Script Manager codes
    Roman = 0,
    Arabic = 4,
    Japanese = 1,
    Hebrew = 5,
    ChineseTrad = 2,
    Greek = 6,
    Korean = 3,
    Russian = 7,
}
fn mac_eid(v: u16) -> Option<MacEid> {
    use crate::MacEid::*;
    match v {
        0 => Some(Roman),
        1 => Some(Japanese),
        2 => Some(ChineseTrad),
        3 => Some(Korean),
        4 => Some(Arabic),
        5 => Some(Hebrew),
        6 => Some(Greek),
        7 => Some(Russian),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub enum MicrosoftLang {
    // languageID for PLATFORM_ID_MICROSOFT; same as LCID...
    // problematic because there are e.g. 16 english LCIDs and 16 arabic LCIDs
    English = 0x0409,
    Italian = 0x0410,
    Chinese = 0x0804,
    Japanese = 0x0411,
    Dutch = 0x0413,
    Korean = 0x0412,
    French = 0x040c,
    Russian = 0x0419,
    German = 0x0407,
    // Spanish = 0x0409,
    Hebrew = 0x040d,
    Swedish = 0x041D,
}
fn microsoft_lang(v: u16) -> Option<MicrosoftLang> {
    use crate::MicrosoftLang::*;
    match v {
        0x0409 => Some(English),
        0x0804 => Some(Chinese),
        0x0413 => Some(Dutch),
        0x040c => Some(French),
        0x0407 => Some(German),
        0x040d => Some(Hebrew),
        0x0410 => Some(Italian),
        0x0411 => Some(Japanese),
        0x0412 => Some(Korean),
        0x0419 => Some(Russian),
        0x041D => Some(Swedish),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub enum MacLang {
    // languageID for PLATFORM_ID_MAC
    English = 0,
    Japanese = 11,
    Arabic = 12,
    Korean = 23,
    Dutch = 4,
    Russian = 32,
    French = 1,
    Spanish = 6,
    German = 2,
    Swedish = 5,
    Hebrew = 10,
    ChineseSimplified = 33,
    Italian = 3,
    ChineseTrad = 19,
}
fn mac_lang(v: u16) -> Option<MacLang> {
    use crate::MacLang::*;
    match v {
        0 => Some(English),
        12 => Some(Arabic),
        4 => Some(Dutch),
        1 => Some(French),
        2 => Some(German),
        10 => Some(Hebrew),
        3 => Some(Italian),
        11 => Some(Japanese),
        23 => Some(Korean),
        32 => Some(Russian),
        6 => Some(Spanish),
        5 => Some(Swedish),
        33 => Some(ChineseSimplified),
        19 => Some(ChineseTrad),
        _ => None,
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum PlatformEncodingLanguageId {
    Unicode(Option<Result<UnicodeEid, u16>>, Option<u16>),
    Mac(Option<Result<MacEid, u16>>, Option<Result<MacLang, u16>>),
    Iso(Option<u16>, Option<u16>),
    Microsoft(
        Option<Result<MicrosoftEid, u16>>,
        Option<Result<MicrosoftLang, u16>>,
    ),
}
fn platform_encoding_id(
    platform_id: PlatformId,
    encoding_id: Option<u16>,
    language_id: Option<u16>,
) -> PlatformEncodingLanguageId {
    match platform_id {
        PlatformId::Unicode => PlatformEncodingLanguageId::Unicode(
            encoding_id.map(|id| unicode_eid(id).ok_or(id)),
            language_id,
        ),
        PlatformId::Mac => PlatformEncodingLanguageId::Mac(
            encoding_id.map(|id| mac_eid(id).ok_or(id)),
            language_id.map(|id| mac_lang(id).ok_or(id)),
        ),
        PlatformId::Iso => PlatformEncodingLanguageId::Iso(encoding_id, language_id),
        PlatformId::Microsoft => PlatformEncodingLanguageId::Microsoft(
            encoding_id.map(|id| microsoft_eid(id).ok_or(id)),
            language_id.map(|id| microsoft_lang(id).ok_or(id)),
        ),
    }
}

// # accessors to parse data from file

// on platforms that don't allow misaligned reads, if we want to allow
// truetype fonts that aren't padded to alignment, define
// ALLOW_UNALIGNED_TRUETYPE

/// Return `true` if `data` holds a font stored in a format this crate
/// recognizes, according to its signature in the initial bytes.
pub fn is_font(data: &[u8]) -> bool {
    if data.len() >= 4 {
        let tag = &data[0..4];
        tag == [b'1', 0, 0, 0] || tag == b"typ1" || tag == b"OTTO" || tag == [0, 1, 0, 0]
    } else {
        false
    }
}

/// Return `true` if `data` holds a TrueType Collection, according to its
/// signature in the initial bytes. A TrueType Collection stores several fonts
/// in a single file, allowing them to share data for glyphs they have in
/// common.
pub fn is_collection(data: &[u8]) -> bool {
    data.len() >= 4 && &data[0..4] == b"ttcf"
}

fn find_table(data: &[u8], fontstart: usize, tag: &[u8]) -> u32 {
    let num_tables = BE::read_u16(&data[fontstart + 4..]);
    let tabledir = fontstart + 12;
    for i in 0..num_tables {
        let loc = tabledir + 16 * (i as usize);
        if &data[loc..loc + 4] == tag {
            return BE::read_u32(&data[loc + 8..]);
        }
    }
    0
}

/// Each .ttf/.ttc file may have more than one font. Each font has a sequential
/// index number starting from 0. Call this function to get the font offset for
/// a given index; it returns None if the index is out of range. A regular .ttf
/// file will only define one font and it always be at offset 0, so it will
/// return Some(0) for index 0, and None for all other indices. You can just
/// skip this step if you know it's that kind of font.
pub fn get_font_offset_for_index(font_collection: &[u8], index: i32) -> Option<u32> {
    // if it's just a font, there's only one valid index
    if is_font(font_collection) {
        return if index == 0 { Some(0) } else { None };
    }
    // check if it's a TTC
    if is_collection(font_collection)
        && (BE::read_u32(&font_collection[4..]) == 0x0001_0000
            || BE::read_u32(&font_collection[4..]) == 0x0002_0000)
    {
        let n = BE::read_i32(&font_collection[8..]);
        if index >= n {
            return None;
        }
        return Some(BE::read_u32(&font_collection[12 + (index as usize) * 4..]));
    }
    None
}

macro_rules! read_ints {
    ($n:expr, i16, $data:expr) => {{
        let mut nums = [0; $n];
        let data = $data;
        BE::read_i16_into(&data[..$n * 2], &mut nums);
        nums
    }};
    ($n:expr, u16, $data:expr) => {{
        let mut nums = [0; $n];
        let data = $data;
        BE::read_u16_into(&data[..$n * 2], &mut nums);
        nums
    }};
    ($n:expr, u32, $data:expr) => {{
        let mut nums = [0; $n];
        let data = $data;
        BE::read_u32_into(&data[..$n * 4], &mut nums);
        nums
    }};
}

impl<Data: Deref<Target = [u8]>> FontInfo<Data> {
    /// Given an offset into the file that defines a font, this function builds
    /// the necessary cached info for the rest of the system.
    pub fn new(data: Data, fontstart: usize) -> Option<FontInfo<Data>> {
        let cmap = find_table(&data, fontstart, b"cmap"); // required
        let loca = find_table(&data, fontstart, b"loca"); // required
        let head = find_table(&data, fontstart, b"head"); // required
        let glyf = find_table(&data, fontstart, b"glyf"); // required
        let hhea = find_table(&data, fontstart, b"hhea"); // required
        let hmtx = find_table(&data, fontstart, b"hmtx"); // required
        let name = find_table(&data, fontstart, b"name"); // not required
        let kern = find_table(&data, fontstart, b"kern"); // not required
        if cmap == 0 || loca == 0 || head == 0 || glyf == 0 || hhea == 0 || hmtx == 0 {
            return None;
        }
        let t = find_table(&data, fontstart, b"maxp");
        let num_glyphs = if t != 0 {
            BE::read_u16(&data[t as usize + 4..])
        } else {
            0xffff
        };

        // find a cmap encoding table we understand *now* to avoid searching
        // later. (todo: could make this installable)
        // the same regardless of glyph.
        let num_tables = BE::read_u16(&data[cmap as usize + 2..]);
        let mut index_map = 0;
        for i in 0..num_tables {
            let encoding_record = (cmap + 4 + 8 * (i as u32)) as usize;
            // find an encoding we understand:
            match platform_id(BE::read_u16(&data[encoding_record..])) {
                Some(PlatformId::Microsoft) => {
                    match microsoft_eid(BE::read_u16(&data[encoding_record + 2..])) {
                        Some(MicrosoftEid::UnicodeBMP) | Some(MicrosoftEid::UnicodeFull) => {
                            // MS/Unicode
                            index_map = cmap + BE::read_u32(&data[encoding_record + 4..]);
                        }
                        _ => (),
                    }
                }
                Some(PlatformId::Unicode) => {
                    // Mac/iOS has these
                    // all the encodingIDs are unicode, so we don't bother to check it
                    index_map = cmap + BE::read_u32(&data[encoding_record + 4..]);
                }
                _ => (),
            }
        }
        if index_map == 0 {
            return None;
        }
        let index_to_loc_format = BE::read_u16(&data[head as usize + 50..]) as u32;
        Some(FontInfo {
            // fontstart: fontstart,
            data,
            loca,
            head,
            glyf,
            hhea,
            hmtx,
            name,
            kern,
            num_glyphs: num_glyphs as u32,
            index_map,
            index_to_loc_format,
        })
    }

    pub fn get_num_glyphs(&self) -> u32 {
        self.num_glyphs
    }

    /// If you're going to perform multiple operations on the same character
    /// and you want a speed-up, call this function with the character you're
    /// going to process, then use glyph-based functions instead of the
    /// codepoint-based functions.
    pub fn find_glyph_index(&self, unicode_codepoint: u32) -> u32 {
        let data = &self.data;
        let index_map = &data[self.index_map as usize..]; //self.index_map as usize;

        let format = BE::read_u16(index_map);
        match format {
            0 => {
                // apple byte encoding
                let bytes = BE::read_u16(&index_map[2..]);
                if unicode_codepoint < bytes as u32 - 6 {
                    return index_map[6 + unicode_codepoint as usize] as u32;
                }
                0
            }
            6 => {
                let first = BE::read_u16(&index_map[6..]) as u32;
                let count = BE::read_u16(&index_map[8..]) as u32;
                if unicode_codepoint >= first && unicode_codepoint < first + count {
                    return BE::read_u16(&index_map[10 + (unicode_codepoint - first) as usize * 2..])
                        as u32;
                }
                0
            }
            2 => {
                // @TODO: high-byte mapping for japanese/chinese/korean
                panic!("Index map format unsupported: 2");
            }
            4 => {
                // standard mapping for windows fonts: binary search collection of ranges
                let segcount = BE::read_u16(&index_map[6..]) as usize >> 1;
                let mut search_range = BE::read_u16(&index_map[8..]) as usize >> 1;
                let mut entry_selector = BE::read_u16(&index_map[10..]);
                let range_shift = BE::read_u16(&index_map[12..]) as usize >> 1;

                // do a binary search of the segments
                let end_count = self.index_map as usize + 14;
                let mut search = end_count;

                if unicode_codepoint > 0xffff {
                    return 0;
                }

                // they lie from endCount .. endCount + segCount
                // but searchRange is the nearest power of two, so...
                if unicode_codepoint >= BE::read_u16(&data[search + range_shift * 2..]) as u32 {
                    search += range_shift * 2;
                }

                // now decrement to bias correctly to find smallest
                search -= 2;
                while entry_selector != 0 {
                    search_range >>= 1;
                    let end = BE::read_u16(&data[search + search_range * 2..]) as u32;
                    if unicode_codepoint > end {
                        search += search_range * 2;
                    }
                    entry_selector -= 1;
                }
                search += 2;

                {
                    let item = (search - end_count) >> 1;
                    assert!(
                        unicode_codepoint <= BE::read_u16(&data[end_count + 2 * item..]) as u32
                    );
                    let start = BE::read_u16(&index_map[14 + segcount * 2 + 2 + 2 * item..]) as u32;
                    if unicode_codepoint < start {
                        return 0;
                    }
                    let offset =
                        BE::read_u16(&index_map[14 + segcount * 6 + 2 + 2 * item..]) as usize;
                    if offset == 0 {
                        return (unicode_codepoint as i32
                            + BE::read_i16(&index_map[14 + segcount * 4 + 2 + 2 * item..]) as i32)
                            as u16 as u32;
                    }
                    BE::read_u16(
                        &index_map[offset
                            + (unicode_codepoint - start) as usize * 2
                            + 14
                            + segcount * 6
                            + 2
                            + 2 * item..],
                    ) as u32
                }
            }
            12 | 13 => {
                let mut low = 0u32;
                let mut high = BE::read_u32(&index_map[12..]);
                let groups = &index_map[16..];

                // Binary search of the right group
                while low < high {
                    let mid = (low + high) / 2; // rounds down, so low <= mid < high
                    let mid12 = (mid * 12) as usize;
                    let group = &groups[mid12..mid12 + 12];
                    let start_char = BE::read_u32(group);
                    if unicode_codepoint < start_char {
                        high = mid;
                    } else if unicode_codepoint > BE::read_u32(&group[4..]) {
                        low = mid + 1;
                    } else {
                        let start_glyph = BE::read_u32(&group[8..]);
                        if format == 12 {
                            return start_glyph + unicode_codepoint - start_char;
                        } else {
                            return start_glyph;
                        }
                    }
                }

                0
            }
            n => panic!("Index map format unsupported: {}", n),
        }
    }

    /// Returns the series of vertices encoding the shape of the glyph for this
    /// codepoint.
    ///
    /// The shape is a series of countours. Each one starts with
    /// a moveto, then consists of a series of mixed
    /// lineto and curveto segments. A lineto
    /// draws a line from previous endpoint to its x,y; a curveto
    /// draws a quadratic bezier from previous endpoint to
    /// its x,y, using cx,cy as the bezier control point.
    pub fn get_codepoint_shape(&self, unicode_codepoint: u32) -> Option<Vec<Vertex>> {
        self.get_glyph_shape(self.find_glyph_index(unicode_codepoint))
    }

    fn get_glyf_offset(&self, glyph_index: u32) -> Option<u32> {
        if glyph_index >= self.num_glyphs || self.index_to_loc_format >= 2 {
            // glyph index out of range or unknown index->glyph map format
            return None;
        }

        let [g1, g2] = if self.index_to_loc_format == 0 {
            let d = &self.data[(self.loca + glyph_index * 2) as usize..];
            let [g1, g2] = read_ints!(2, u16, d);
            [g1 as u32 * 2, g2 as u32 * 2]
        } else {
            read_ints!(2, u32, &self.data[(self.loca + glyph_index * 4) as usize..])
        };
        if g1 == g2 {
            None
        } else {
            Some(self.glyf + g1)
        }
    }

    /// Like `get_codepoint_box`, but takes a glyph index. Use this if you have
    /// cached the glyph index for a codepoint.
    pub fn get_glyph_box(&self, glyph_index: u32) -> Option<Rect<i16>> {
        let g = self.get_glyf_offset(glyph_index)? as usize;
        let [x0, y0, x1, y1] = read_ints!(4, i16, &self.data[g + 2..]);
        Some(Rect { x0, y0, x1, y1 })
    }

    /// Gets the bounding box of the visible part of the glyph, in unscaled
    /// coordinates
    pub fn get_codepoint_box(&self, codepoint: u32) -> Option<Rect<i16>> {
        self.get_glyph_box(self.find_glyph_index(codepoint))
    }

    /// returns true if nothing is drawn for this glyph
    pub fn is_glyph_empty(&self, glyph_index: u32) -> bool {
        match self.get_glyf_offset(glyph_index) {
            Some(g) => {
                let number_of_contours = BE::read_i16(&self.data[g as usize..]);
                number_of_contours == 0
            }
            None => true,
        }
    }

    /// Like `get_codepoint_shape`, but takes a glyph index instead. Use this
    /// if you have cached the glyph index for a codepoint.
    pub fn get_glyph_shape(&self, glyph_index: u32) -> Option<Vec<Vertex>> {
        let g = match self.get_glyf_offset(glyph_index) {
            Some(g) => &self.data[g as usize..],
            None => return None,
        };

        let number_of_contours = BE::read_i16(g);
        let vertices: Vec<Vertex> = if number_of_contours > 0 {
            self.glyph_shape_positive_contours(g, number_of_contours as usize)
        } else if number_of_contours == -1 {
            // Compound shapes
            let mut more = true;
            let mut comp = &g[10..];
            let mut vertices = Vec::new();
            while more {
                let mut mtx = [1.0, 0.0, 0.0, 1.0, 0.0, 0.0];

                let [flags, gidx] = read_ints!(2, i16, comp);
                comp = &comp[4..];
                let gidx = gidx as u16;

                if flags & 2 != 0 {
                    // XY values
                    if flags & 1 != 0 {
                        // shorts
                        let [a, b] = read_ints!(2, i16, comp);
                        comp = &comp[4..];
                        mtx[4] = a as f32;
                        mtx[5] = b as f32;
                    } else {
                        mtx[4] = (comp[0] as i8) as f32;
                        mtx[5] = (comp[1] as i8) as f32;
                        comp = &comp[2..];
                    }
                } else {
                    panic!("Matching points not supported.");
                }
                if flags & (1 << 3) != 0 {
                    // WE_HAVE_A_SCALE
                    mtx[0] = BE::read_i16(comp) as f32 / 16384.0;
                    comp = &comp[2..];
                    mtx[1] = 0.0;
                    mtx[2] = 0.0;
                    mtx[3] = mtx[0];
                } else if flags & (1 << 6) != 0 {
                    // WE_HAVE_AN_X_AND_YSCALE
                    let [a, b] = read_ints!(2, i16, comp);
                    comp = &comp[4..];
                    mtx[0] = a as f32 / 16384.0;
                    mtx[1] = 0.0;
                    mtx[2] = 0.0;
                    mtx[3] = b as f32 / 16384.0;
                } else if flags & (1 << 7) != 0 {
                    // WE_HAVE_A_TWO_BY_TWO
                    let [a, b, c, d] = read_ints!(4, i16, comp);
                    comp = &comp[8..];
                    mtx[0] = a as f32 / 16384.0;
                    mtx[1] = b as f32 / 16384.0;
                    mtx[2] = c as f32 / 16384.0;
                    mtx[3] = d as f32 / 16384.0;
                }

                // Find transformation scales.
                let m = (mtx[0] * mtx[0] + mtx[1] * mtx[1]).sqrt();
                let n = (mtx[2] * mtx[2] + mtx[3] * mtx[3]).sqrt();

                // Get indexed glyph.
                let mut comp_verts = self.get_glyph_shape(gidx as u32).unwrap_or_else(Vec::new);
                if !comp_verts.is_empty() {
                    // Transform vertices
                    for v in &mut *comp_verts {
                        let (x, y, cx, cy) = (v.x as f32, v.y as f32, v.cx as f32, v.cy as f32);
                        *v = Vertex {
                            type_: v.type_,
                            x: (m * (mtx[0] * x + mtx[2] * y + mtx[4])) as i16,
                            y: (n * (mtx[1] * x + mtx[3] * y + mtx[5])) as i16,
                            cx: (m * (mtx[0] * cx + mtx[2] * cy + mtx[4])) as i16,
                            cy: (n * (mtx[1] * cx + mtx[3] * cy + mtx[5])) as i16,
                        };
                    }
                    // Append vertices.
                    vertices.append(&mut comp_verts);
                }
                // More components ?
                more = flags & (1 << 5) != 0;
            }
            vertices
        } else if number_of_contours < 0 {
            panic!("Contour format not supported.")
        } else {
            return None;
        };
        Some(vertices)
    }

    #[inline]
    fn glyph_shape_positive_contours(
        &self,
        glyph_data: &[u8],
        number_of_contours: usize,
    ) -> Vec<Vertex> {
        use crate::VertexType::*;

        struct FlagData {
            flags: u8,
            x: i16,
            y: i16,
        }

        #[inline]
        fn close_shape(
            vertices: &mut Vec<Vertex>,
            was_off: bool,
            start_off: bool,
            sx: i16,
            sy: i16,
            scx: i16,
            scy: i16,
            cx: i16,
            cy: i16,
        ) {
            if start_off {
                if was_off {
                    vertices.push(Vertex {
                        type_: CurveTo as u8,
                        x: (cx + scx) >> 1,
                        y: (cy + scy) >> 1,
                        cx,
                        cy,
                    });
                }
                vertices.push(Vertex {
                    type_: CurveTo as u8,
                    x: sx,
                    y: sy,
                    cx: scx,
                    cy: scy,
                });
            } else {
                vertices.push(if was_off {
                    Vertex {
                        type_: CurveTo as u8,
                        x: sx,
                        y: sy,
                        cx,
                        cy,
                    }
                } else {
                    Vertex {
                        type_: LineTo as u8,
                        x: sx,
                        y: sy,
                        cx: 0,
                        cy: 0,
                    }
                });
            }
        }

        let number_of_contours = number_of_contours as usize;
        let mut start_off = false;
        let mut was_off = false;
        let end_points_of_contours = &glyph_data[10..];
        let ins = BE::read_u16(&glyph_data[10 + number_of_contours * 2..]) as usize;
        let mut points = &glyph_data[10 + number_of_contours * 2 + 2 + ins..];

        let n = 1 + BE::read_u16(&end_points_of_contours[number_of_contours * 2 - 2..]) as usize;

        let m = n + 2 * number_of_contours; // a loose bound on how many vertices we might need
        let mut vertices: Vec<Vertex> = Vec::with_capacity(m);

        let mut flag_data = Vec::with_capacity(n);

        let mut next_move = 0;

        // in first pass, we load uninterpreted data into the allocated array above

        // first load flags
        {
            let mut flagcount = 0;
            let mut flags = 0;
            for _ in 0..n {
                if flagcount == 0 {
                    flags = points[0];
                    if flags & 8 != 0 {
                        flagcount = points[1];
                        points = &points[2..];
                    } else {
                        points = &points[1..];
                    }
                } else {
                    flagcount -= 1;
                }
                flag_data.push(FlagData { flags, x: 0, y: 0 });
            }
        }

        // now load x coordinates
        let mut x_coord = 0_i16;
        for flag_data in &mut flag_data {
            let flags = flag_data.flags;
            if flags & 2 != 0 {
                let dx = i16::from(points[0]);
                points = &points[1..];
                if flags & 16 != 0 {
                    // ???
                    x_coord += dx;
                } else {
                    x_coord -= dx;
                }
            } else if flags & 16 == 0 {
                x_coord += BE::read_i16(points);
                points = &points[2..];
            }
            flag_data.x = x_coord;
        }

        // now load y coordinates
        let mut y_coord = 0_i16;
        for flag_data in &mut flag_data {
            let flags = flag_data.flags;
            if flags & 4 != 0 {
                let dy = i16::from(points[0]);
                points = &points[1..];
                if flags & 32 != 0 {
                    y_coord += dy;
                } else {
                    y_coord -= dy;
                }
            } else if flags & 32 == 0 {
                y_coord += BE::read_i16(points);
                points = &points[2..];
            }
            flag_data.y = y_coord;
        }

        // now convert them to our format
        let mut sx = 0;
        let mut sy = 0;
        let mut cx = 0;
        let mut cy = 0;
        let mut scx = 0;
        let mut scy = 0;
        let mut j = 0;

        let mut iter = flag_data.into_iter().enumerate().peekable();

        while let Some((index, FlagData { flags, x, y })) = iter.next() {
            if next_move == index {
                if index != 0 {
                    close_shape(&mut vertices, was_off, start_off, sx, sy, scx, scy, cx, cy);
                }

                // now start the new one
                start_off = flags & 1 == 0;
                if start_off {
                    // if we start off with an off-curve point, then when we need to find a
                    // point on the curve where we can start, and we
                    // need to save some state for
                    // when we wraparound.
                    scx = x;
                    scy = y;

                    let (next_flags, next_x, next_y) = match iter.peek() {
                        Some((_, fd)) => (fd.flags, fd.x, fd.y),
                        None => break,
                    };

                    if next_flags & 1 == 0 {
                        // next point is also a curve point, so interpolate an on-point curve
                        sx = (x + next_x) >> 1;
                        sy = (y + next_y) >> 1;
                    } else {
                        // otherwise just use the next point as our start point
                        sx = next_x;
                        sy = next_y;

                        // we're using point i+1 as the starting point, so skip it
                        let _ = iter.next();
                    }
                } else {
                    sx = x;
                    sy = y;
                }
                vertices.push(Vertex {
                    type_: MoveTo as u8,
                    x: sx,
                    y: sy,
                    cx: 0,
                    cy: 0,
                });
                was_off = false;
                next_move = 1 + BE::read_u16(&end_points_of_contours[j * 2..]) as usize;
                j += 1;
            } else if flags & 1 == 0 {
                // if it's a curve
                if was_off {
                    // two off-curve control points in a row means interpolate an on-curve
                    // midpoint
                    vertices.push(Vertex {
                        type_: CurveTo as u8,
                        x: ((cx + x) >> 1),
                        y: ((cy + y) >> 1),
                        cx,
                        cy,
                    });
                }
                cx = x;
                cy = y;
                was_off = true;
            } else {
                vertices.push(if was_off {
                    Vertex {
                        type_: CurveTo as u8,
                        x,
                        y,
                        cx,
                        cy,
                    }
                } else {
                    Vertex {
                        type_: LineTo as u8,
                        x,
                        y,
                        cx: 0,
                        cy: 0,
                    }
                });
                was_off = false;
            }
        }
        close_shape(
            &mut vertices,
            // &mut num_vertices,
            was_off,
            start_off,
            sx,
            sy,
            scx,
            scy,
            cx,
            cy,
        );

        vertices
    }

    /// like `get_codepoint_h_metrics`, but takes a glyph index instead. Use
    /// this if you have cached the glyph index for a codepoint.
    pub fn get_glyph_h_metrics(&self, glyph_index: u32) -> HMetrics {
        let num_of_long_hor_metrics = BE::read_u16(&self.data[self.hhea as usize + 34..]) as usize;
        let glyph_index = glyph_index as usize;
        if glyph_index < num_of_long_hor_metrics {
            let data = &self.data[self.hmtx as usize + 4 * glyph_index..];
            let [advance_width, left_side_bearing] = read_ints!(2, i16, data);
            HMetrics {
                advance_width: i32::from(advance_width),
                left_side_bearing: i32::from(left_side_bearing),
            }
        } else {
            HMetrics {
                advance_width: BE::read_i16(
                    &self.data[self.hmtx as usize + 4 * (num_of_long_hor_metrics - 1)..],
                ) as i32,
                left_side_bearing: BE::read_i16(
                    &self.data[self.hmtx as usize
                        + 4 * num_of_long_hor_metrics
                        + 2 * (glyph_index as isize - num_of_long_hor_metrics as isize) as usize..],
                ) as i32,
            }
        }
    }

    /// like `get_codepoint_kern_advance`, but takes glyph indices instead. Use
    /// this if you have cached the glyph indices for the codepoints.
    pub fn get_glyph_kern_advance(&self, glyph_1: u32, glyph_2: u32) -> i32 {
        let kern = &self.data[self.kern as usize..];
        // we only look at the first table. it must be 'horizontal' and format 0
        if self.kern == 0 || BE::read_u16(&kern[2..]) < 1 || BE::read_u16(&kern[8..]) != 1 {
            // kern not present, OR
            // no tables (need at least one), OR
            // horizontal flag not set in format
            return 0;
        }

        let mut l: i32 = 0;
        let mut r: i32 = BE::read_u16(&kern[10..]) as i32 - 1;
        let needle = glyph_1 << 16 | glyph_2;
        while l <= r {
            let m = (l + r) >> 1;
            let straw = BE::read_u32(&kern[18 + (m as usize) * 6..]); // note: unaligned read
            if needle < straw {
                r = m - 1;
            } else if needle > straw {
                l = m + 1;
            } else {
                return BE::read_i16(&kern[22 + (m as usize) * 6..]) as i32;
            }
        }
        0
    }

    /// an additional amount to add to the 'advance' value between cp1 and cp2
    pub fn get_codepoint_kern_advance(&self, cp1: u32, cp2: u32) -> i32 {
        if self.kern == 0 {
            // if no kerning table, don't waste time looking up both codepoint->glyphs
            0
        } else {
            self.get_glyph_kern_advance(self.find_glyph_index(cp1), self.find_glyph_index(cp2))
        }
    }

    /// `left_side_bearing` is the offset from the current horizontal position
    /// to the left edge of the character `advance_width` is the offset
    /// from the current horizontal position to the next horizontal
    /// position these are
    /// expressed in unscaled
    /// coordinates
    pub fn get_codepoint_h_metrics(&self, codepoint: u32) -> HMetrics {
        self.get_glyph_h_metrics(self.find_glyph_index(codepoint))
    }

    /// `ascent` is the coordinate above the baseline the font extends; descent
    /// is the coordinate below the baseline the font extends (i.e. it is
    /// typically negative) `line_gap` is the spacing between one row's
    /// descent and the next row's ascent... so you should advance the
    /// vertical position by `ascent -
    /// descent + line_gap` these are expressed in unscaled coordinates, so
    /// you must multiply by the scale factor for a given size
    pub fn get_v_metrics(&self) -> VMetrics {
        let hhea = &self.data[self.hhea as usize..];
        let [ascent, descent, line_gap] = read_ints!(3, i16, &hhea[4..]);
        VMetrics {
            ascent: i32::from(ascent),
            descent: i32::from(descent),
            line_gap: i32::from(line_gap),
        }
    }

    /// the bounding box around all possible characters
    pub fn get_bounding_box(&self) -> Rect<i16> {
        let head = &self.data[self.head as usize..];
        Rect {
            x0: BE::read_i16(&head[36..]),
            y0: BE::read_i16(&head[38..]),
            x1: BE::read_i16(&head[40..]),
            y1: BE::read_i16(&head[42..]),
        }
    }

    /// computes a scale factor to produce a font whose "height" is 'pixels'
    /// tall. Height is measured as the distance from the highest ascender
    /// to the lowest descender; in other words, it's equivalent to calling
    /// GetFontVMetrics and computing:
    ///       scale = pixels / (ascent - descent)
    /// so if you prefer to measure height by the ascent only, use a similar
    /// calculation.
    pub fn scale_for_pixel_height(&self, height: f32) -> f32 {
        let hhea = &self.data[self.hhea as usize..];
        let fheight = {
            let [a, b] = read_ints!(2, i16, &hhea[4..]);
            f32::from(a) - f32::from(b)
        };
        height / fheight
    }

    /// Returns the units per EM square of this font.
    pub fn units_per_em(&self) -> u16 {
        BE::read_u16(&self.data[self.head as usize + 18..])
    }

    /// computes a scale factor to produce a font whose EM size is mapped to
    /// `pixels` tall. This is probably what traditional APIs compute, but
    /// I'm not positive.
    pub fn scale_for_mapping_em_to_pixels(&self, pixels: f32) -> f32 {
        pixels / (self.units_per_em() as f32)
    }

    /// like `get_codepoint_bitmap_box_subpixel`, but takes a glyph index
    /// instead of a codepoint.
    pub fn get_glyph_bitmap_box_subpixel(
        &self,
        glyph: u32,
        scale_x: f32,
        scale_y: f32,
        shift_x: f32,
        shift_y: f32,
    ) -> Option<Rect<i32>> {
        if let Some(glyph_box) = self.get_glyph_box(glyph) {
            // move to integral bboxes (treating pixels as little squares, what pixels get
            // touched?)
            Some(Rect {
                x0: (glyph_box.x0 as f32 * scale_x + shift_x).floor() as i32,
                y0: (-glyph_box.y1 as f32 * scale_y + shift_y).floor() as i32,
                x1: (glyph_box.x1 as f32 * scale_x + shift_x).ceil() as i32,
                y1: (-glyph_box.y0 as f32 * scale_y + shift_y).ceil() as i32,
            })
        } else {
            // e.g. space character
            None
        }
    }

    /// like `get_codepoint_bitmap_box`, but takes a glyph index instead of a
    /// codepoint.
    pub fn get_glyph_bitmap_box(
        &self,
        glyph: u32,
        scale_x: f32,
        scale_y: f32,
    ) -> Option<Rect<i32>> {
        self.get_glyph_bitmap_box_subpixel(glyph, scale_x, scale_y, 0.0, 0.0)
    }

    /// same as get_codepoint_bitmap_box, but you can specify a subpixel
    /// shift for the character
    pub fn get_codepoint_bitmap_box_subpixel(
        &self,
        codepoint: u32,
        scale_x: f32,
        scale_y: f32,
        shift_x: f32,
        shift_y: f32,
    ) -> Option<Rect<i32>> {
        self.get_glyph_bitmap_box_subpixel(
            self.find_glyph_index(codepoint),
            scale_x,
            scale_y,
            shift_x,
            shift_y,
        )
    }

    /// get the bounding box of the bitmap centered around the glyph origin; so
    /// the bitmap width is x1-x0, height is y1-y0, and location to place
    /// the bitmap top left is (left_side_bearing*scale, y0).
    /// (Note that the bitmap uses y-increases-down, but the shape uses
    /// y-increases-up, so CodepointBitmapBox and CodepointBox are inverted.)
    pub fn get_codepoint_bitmap_box(
        &self,
        codepoint: u32,
        scale_x: f32,
        scale_y: f32,
    ) -> Option<Rect<i32>> {
        self.get_codepoint_bitmap_box_subpixel(codepoint, scale_x, scale_y, 0.0, 0.0)
    }

    pub fn get_font_name_strings(&self) -> FontNameIter<'_, Data> {
        let nm = self.name as usize;
        if nm == 0 {
            return FontNameIter {
                font_info: &self,
                string_offset: 0,
                index: 0,
                count: 0,
            };
        }
        let count = BE::read_u16(&self.data[nm + 2..]) as usize;
        let string_offset = nm + BE::read_u16(&self.data[nm + 4..]) as usize;

        FontNameIter {
            font_info: &self,
            string_offset,
            index: 0,
            count,
        }
    }
}

#[derive(Clone, Copy, Debug)]
pub struct FontNameIter<'a, Data: Deref<Target = [u8]>> {
    /// Font info.
    font_info: &'a FontInfo<Data>,
    string_offset: usize,
    /// Next index.
    index: usize,
    /// Number of name strings.
    count: usize,
}

impl<'a, Data: 'a + Deref<Target = [u8]>> Iterator for FontNameIter<'a, Data> {
    type Item = (&'a [u8], Option<PlatformEncodingLanguageId>, u16);

    fn next(&mut self) -> Option<Self::Item> {
        if self.index >= self.count {
            return None;
        }

        let loc = self.font_info.name as usize + 6 + 12 * self.index;

        let pl_id = platform_id(BE::read_u16(&self.font_info.data[loc..]));
        let platform_encoding_language_id = pl_id.map(|pl_id| {
            let encoding_id = BE::read_u16(&self.font_info.data[loc + 2..]);
            let language_id = BE::read_u16(&self.font_info.data[loc + 4..]);
            platform_encoding_id(pl_id, Some(encoding_id), Some(language_id))
        });
        // @TODO: Define an enum type for Name ID.
        //        See https://www.microsoft.com/typography/otspec/name.htm, "Name IDs" section.
        let name_id = BE::read_u16(&self.font_info.data[loc + 6..]);
        let length = BE::read_u16(&self.font_info.data[loc + 8..]) as usize;
        let offset = self.string_offset + BE::read_u16(&self.font_info.data[loc + 10..]) as usize;

        self.index += 1;

        Some((
            &self.font_info.data[offset..offset + length],
            platform_encoding_language_id,
            name_id,
        ))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = self.count - self.index;
        (remaining, Some(remaining))
    }

    fn count(self) -> usize {
        self.count - self.index
    }

    fn last(mut self) -> Option<Self::Item> {
        if self.index >= self.count || self.count == 0 {
            return None;
        }
        self.index = self.count - 1;
        self.next()
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        if n > self.count - self.index {
            self.index = self.count;
            return None;
        }
        self.index += n;
        self.next()
    }
}