#[repr(C)]pub struct Point2D<T, U> {
pub x: T,
pub y: T,
/* private fields */
}Expand description
A 2d Point tagged with a unit.
Fields§
§x: T§y: TImplementations§
source§impl<T, U> Point2D<T, U>
impl<T, U> Point2D<T, U>
sourcepub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self
Constructor taking properly Lengths instead of scalar values.
sourcepub fn splat(v: T) -> Selfwhere
T: Clone,
pub fn splat(v: T) -> Selfwhere
T: Clone,
Constructor setting all components to the same value.
sourcepub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self
Tag a unitless value with units.
source§impl<T: Copy, U> Point2D<T, U>
impl<T: Copy, U> Point2D<T, U>
sourcepub fn extend(self, z: T) -> Point3D<T, U>
pub fn extend(self, z: T) -> Point3D<T, U>
Create a 3d point from this one, using the specified z value.
sourcepub fn to_vector(self) -> Vector2D<T, U>
pub fn to_vector(self) -> Vector2D<T, U>
Cast this point into a vector.
Equivalent to subtracting the origin from this point.
sourcepub fn yx(self) -> Self
pub fn yx(self) -> Self
Swap x and y.
Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.yx(), point2(-8, 1));sourcepub fn to_untyped(self) -> Point2D<T, UnknownUnit>
pub fn to_untyped(self) -> Point2D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.to_untyped().x);
assert_eq!(point.y, point.to_untyped().y);sourcepub fn cast_unit<V>(self) -> Point2D<T, V>
pub fn cast_unit<V>(self) -> Point2D<T, V>
Cast the unit, preserving the numeric value.
Example
enum Mm {}
enum Cm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.x, point.cast_unit::<Cm>().x);
assert_eq!(point.y, point.cast_unit::<Cm>().y);sourcepub fn to_array(self) -> [T; 2]
pub fn to_array(self) -> [T; 2]
Cast into an array with x and y.
Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_array(), [1, -8]);sourcepub fn to_tuple(self) -> (T, T)
pub fn to_tuple(self) -> (T, T)
Cast into a tuple with x and y.
Example
enum Mm {}
let point: Point2D<_, Mm> = point2(1, -8);
assert_eq!(point.to_tuple(), (1, -8));sourcepub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
pub fn to_3d(self) -> Point3D<T, U>where
T: Zero,
Convert into a 3d point with z-coordinate equals to zero.
sourcepub fn round(self) -> Selfwhere
T: Round,
pub fn round(self) -> Selfwhere
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).round(), point2::<_, Mm>(0.0, -1.0))sourcepub fn ceil(self) -> Selfwhere
T: Ceil,
pub fn ceil(self) -> Selfwhere
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).ceil(), point2::<_, Mm>(0.0, 0.0))sourcepub fn floor(self) -> Selfwhere
T: Floor,
pub fn floor(self) -> Selfwhere
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point2::<_, Mm>(-0.1, -0.8).floor(), point2::<_, Mm>(-1.0, -1.0))sourcepub fn lerp(self, other: Self, t: T) -> Self
pub fn lerp(self, other: Self, t: T) -> Self
Linearly interpolate between this point and another point.
Example
use euclid::point2;
use euclid::default::Point2D;
let from: Point2D<_> = point2(0.0, 10.0);
let to: Point2D<_> = point2(8.0, -4.0);
assert_eq!(from.lerp(to, -1.0), point2(-8.0, 24.0));
assert_eq!(from.lerp(to, 0.0), point2( 0.0, 10.0));
assert_eq!(from.lerp(to, 0.5), point2( 4.0, 3.0));
assert_eq!(from.lerp(to, 1.0), point2( 8.0, -4.0));
assert_eq!(from.lerp(to, 2.0), point2(16.0, -18.0));source§impl<T: PartialOrd, U> Point2D<T, U>
impl<T: PartialOrd, U> Point2D<T, U>
source§impl<T: NumCast + Copy, U> Point2D<T, U>
impl<T: NumCast + Copy, U> Point2D<T, U>
sourcepub fn cast<NewT: NumCast>(self) -> Point2D<NewT, U>
pub fn cast<NewT: NumCast>(self) -> Point2D<NewT, U>
Cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
sourcepub fn try_cast<NewT: NumCast>(self) -> Option<Point2D<NewT, U>>
pub fn try_cast<NewT: NumCast>(self) -> Option<Point2D<NewT, U>>
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
sourcepub fn to_usize(self) -> Point2D<usize, U>
pub fn to_usize(self) -> Point2D<usize, U>
Cast into an usize point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
sourcepub fn to_u32(self) -> Point2D<u32, U>
pub fn to_u32(self) -> Point2D<u32, U>
Cast into an u32 point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
source§impl<T: Real + Sub<T, Output = T>, U> Point2D<T, U>
impl<T: Real + Sub<T, Output = T>, U> Point2D<T, U>
pub fn distance_to(self, other: Self) -> T
source§impl<T: Euclid, U> Point2D<T, U>
impl<T: Euclid, U> Point2D<T, U>
sourcepub fn rem_euclid(&self, other: &Size2D<T, U>) -> Self
pub fn rem_euclid(&self, other: &Size2D<T, U>) -> Self
Calculates the least nonnegative remainder of self (mod other).
Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.rem_euclid(&s), point2(3.0, 1.0));
assert_eq!((-p).rem_euclid(&s), point2(1.0, 3.0));
assert_eq!(p.rem_euclid(&-s), point2(3.0, 1.0));sourcepub fn div_euclid(&self, other: &Size2D<T, U>) -> Self
pub fn div_euclid(&self, other: &Size2D<T, U>) -> Self
Calculates Euclidean division, the matching method for rem_euclid.
Example
use euclid::point2;
use euclid::default::{Point2D, Size2D};
let p = Point2D::new(7.0, -7.0);
let s = Size2D::new(4.0, -4.0);
assert_eq!(p.div_euclid(&s), point2(1.0, 2.0));
assert_eq!((-p).div_euclid(&s), point2(-2.0, -1.0));
assert_eq!(p.div_euclid(&-s), point2(-1.0, -2.0));Trait Implementations§
source§impl<T: AddAssign, U> AddAssign<Size2D<T, U>> for Point2D<T, U>
impl<T: AddAssign, U> AddAssign<Size2D<T, U>> for Point2D<T, U>
source§fn add_assign(&mut self, other: Size2D<T, U>)
fn add_assign(&mut self, other: Size2D<T, U>)
+= operation. Read moresource§impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>
source§fn add_assign(&mut self, other: Vector2D<T, U>)
fn add_assign(&mut self, other: Vector2D<T, U>)
+= operation. Read moresource§impl<T: ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>
impl<T: ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>
source§fn approx_epsilon() -> Self
fn approx_epsilon() -> Self
source§impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point2D<T, U>
source§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/= operation. Read moresource§impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U>
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U>
source§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/= operation. Read moresource§impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point2D<T, U>
source§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*= operation. Read moresource§impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U>
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U>
source§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*= operation. Read moresource§impl<T, U> PartialEq for Point2D<T, U>where
T: PartialEq,
impl<T, U> PartialEq for Point2D<T, U>where
T: PartialEq,
source§impl<T: SubAssign, U> SubAssign<Size2D<T, U>> for Point2D<T, U>
impl<T: SubAssign, U> SubAssign<Size2D<T, U>> for Point2D<T, U>
source§fn sub_assign(&mut self, other: Size2D<T, U>)
fn sub_assign(&mut self, other: Size2D<T, U>)
-= operation. Read moresource§impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>
source§fn sub_assign(&mut self, other: Vector2D<T, U>)
fn sub_assign(&mut self, other: Vector2D<T, U>)
-= operation. Read more