#[repr(C)]pub struct Point3D<T, U> {
pub x: T,
pub y: T,
pub z: T,
/* private fields */
}
Expand description
A 3d Point tagged with a unit.
Fields§
§x: T
§y: T
§z: T
Implementations§
source§impl<T, U> Point3D<T, U>
impl<T, U> Point3D<T, U>
sourcepub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Self
Constructor taking properly Lengths instead of scalar values.
sourcepub fn splat(v: T) -> Selfwhere
T: Clone,
pub fn splat(v: T) -> Selfwhere
T: Clone,
Constructor setting all components to the same value.
sourcepub fn from_untyped(p: Point3D<T, UnknownUnit>) -> Self
pub fn from_untyped(p: Point3D<T, UnknownUnit>) -> Self
Tag a unitless value with units.
source§impl<T: Copy, U> Point3D<T, U>
impl<T: Copy, U> Point3D<T, U>
sourcepub fn to_vector(self) -> Vector3D<T, U>
pub fn to_vector(self) -> Vector3D<T, U>
Cast this point into a vector.
Equivalent to subtracting the origin to this point.
sourcepub fn to_array(self) -> [T; 3]
pub fn to_array(self) -> [T; 3]
Cast into an array with x, y and z.
Example
enum Mm {}
let point: Point3D<_, Mm> = point3(1, -8, 0);
assert_eq!(point.to_array(), [1, -8, 0]);
pub fn to_array_4d(self) -> [T; 4]where
T: One,
sourcepub fn to_tuple(self) -> (T, T, T)
pub fn to_tuple(self) -> (T, T, T)
Cast into a tuple with x, y and z.
Example
enum Mm {}
let point: Point3D<_, Mm> = point3(1, -8, 0);
assert_eq!(point.to_tuple(), (1, -8, 0));
pub fn to_tuple_4d(self) -> (T, T, T, T)where
T: One,
sourcepub fn to_untyped(self) -> Point3D<T, UnknownUnit>
pub fn to_untyped(self) -> Point3D<T, UnknownUnit>
Drop the units, preserving only the numeric value.
Example
enum Mm {}
let point: Point3D<_, Mm> = point3(1, -8, 0);
assert_eq!(point.x, point.to_untyped().x);
assert_eq!(point.y, point.to_untyped().y);
assert_eq!(point.z, point.to_untyped().z);
sourcepub fn cast_unit<V>(self) -> Point3D<T, V>
pub fn cast_unit<V>(self) -> Point3D<T, V>
Cast the unit, preserving the numeric value.
Example
enum Mm {}
enum Cm {}
let point: Point3D<_, Mm> = point3(1, -8, 0);
assert_eq!(point.x, point.cast_unit::<Cm>().x);
assert_eq!(point.y, point.cast_unit::<Cm>().y);
assert_eq!(point.z, point.cast_unit::<Cm>().z);
sourcepub fn round(self) -> Selfwhere
T: Round,
pub fn round(self) -> Selfwhere
T: Round,
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).round(), point3::<_, Mm>(0.0, -1.0, 0.0))
sourcepub fn ceil(self) -> Selfwhere
T: Ceil,
pub fn ceil(self) -> Selfwhere
T: Ceil,
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), point3::<_, Mm>(0.0, 0.0, 1.0))
sourcepub fn floor(self) -> Selfwhere
T: Floor,
pub fn floor(self) -> Selfwhere
T: Floor,
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
enum Mm {}
assert_eq!(point3::<_, Mm>(-0.1, -0.8, 0.4).floor(), point3::<_, Mm>(-1.0, -1.0, 0.0))
sourcepub fn lerp(self, other: Self, t: T) -> Self
pub fn lerp(self, other: Self, t: T) -> Self
Linearly interpolate between this point and another point.
Example
use euclid::point3;
use euclid::default::Point3D;
let from: Point3D<_> = point3(0.0, 10.0, -1.0);
let to: Point3D<_> = point3(8.0, -4.0, 0.0);
assert_eq!(from.lerp(to, -1.0), point3(-8.0, 24.0, -2.0));
assert_eq!(from.lerp(to, 0.0), point3( 0.0, 10.0, -1.0));
assert_eq!(from.lerp(to, 0.5), point3( 4.0, 3.0, -0.5));
assert_eq!(from.lerp(to, 1.0), point3( 8.0, -4.0, 0.0));
assert_eq!(from.lerp(to, 2.0), point3(16.0, -18.0, 1.0));
source§impl<T: PartialOrd, U> Point3D<T, U>
impl<T: PartialOrd, U> Point3D<T, U>
source§impl<T: NumCast + Copy, U> Point3D<T, U>
impl<T: NumCast + Copy, U> Point3D<T, U>
sourcepub fn cast<NewT: NumCast>(self) -> Point3D<NewT, U>
pub fn cast<NewT: NumCast>(self) -> Point3D<NewT, U>
Cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
sourcepub fn try_cast<NewT: NumCast>(self) -> Option<Point3D<NewT, U>>
pub fn try_cast<NewT: NumCast>(self) -> Option<Point3D<NewT, U>>
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round()
, ceil()
or floor()
before casting.
sourcepub fn to_usize(self) -> Point3D<usize, U>
pub fn to_usize(self) -> Point3D<usize, U>
Cast into an usize
point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
sourcepub fn to_u32(self) -> Point3D<u32, U>
pub fn to_u32(self) -> Point3D<u32, U>
Cast into an u32
point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round()
, ceil()
or floor()
before the cast in order to obtain
the desired conversion behavior.
source§impl<T: Real + Sub<T, Output = T>, U> Point3D<T, U>
impl<T: Real + Sub<T, Output = T>, U> Point3D<T, U>
pub fn distance_to(self, other: Self) -> T
source§impl<T: Euclid, U> Point3D<T, U>
impl<T: Euclid, U> Point3D<T, U>
sourcepub fn rem_euclid(&self, other: &Size3D<T, U>) -> Self
pub fn rem_euclid(&self, other: &Size3D<T, U>) -> Self
Calculates the least nonnegative remainder of self (mod other)
.
Example
use euclid::point3;
use euclid::default::{Point3D, Size3D};
let p = Point3D::new(7.0, -7.0, 0.0);
let s = Size3D::new(4.0, -4.0, 12.0);
assert_eq!(p.rem_euclid(&s), point3(3.0, 1.0, 0.0));
assert_eq!((-p).rem_euclid(&s), point3(1.0, 3.0, 0.0));
assert_eq!(p.rem_euclid(&-s), point3(3.0, 1.0, 0.0));
sourcepub fn div_euclid(&self, other: &Size3D<T, U>) -> Self
pub fn div_euclid(&self, other: &Size3D<T, U>) -> Self
Calculates Euclidean division, the matching method for rem_euclid
.
Example
use euclid::point3;
use euclid::default::{Point3D, Size3D};
let p = Point3D::new(7.0, -7.0, 0.0);
let s = Size3D::new(4.0, -4.0, 12.0);
assert_eq!(p.div_euclid(&s), point3(1.0, 2.0, 0.0));
assert_eq!((-p).div_euclid(&s), point3(-2.0, -1.0, 0.0));
assert_eq!(p.div_euclid(&-s), point3(-1.0, -2.0, 0.0));
Trait Implementations§
source§impl<T: AddAssign, U> AddAssign<Size3D<T, U>> for Point3D<T, U>
impl<T: AddAssign, U> AddAssign<Size3D<T, U>> for Point3D<T, U>
source§fn add_assign(&mut self, other: Size3D<T, U>)
fn add_assign(&mut self, other: Size3D<T, U>)
+=
operation. Read moresource§impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector3D<T, U>> for Point3D<T, U>
source§fn add_assign(&mut self, other: Vector3D<T, U>)
fn add_assign(&mut self, other: Vector3D<T, U>)
+=
operation. Read moresource§impl<T: ApproxEq<T>, U> ApproxEq<Point3D<T, U>> for Point3D<T, U>
impl<T: ApproxEq<T>, U> ApproxEq<Point3D<T, U>> for Point3D<T, U>
source§fn approx_epsilon() -> Self
fn approx_epsilon() -> Self
source§impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point3D<T, U>
impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Point3D<T, U>
source§fn div_assign(&mut self, scale: Scale<T, U, U>)
fn div_assign(&mut self, scale: Scale<T, U, U>)
/=
operation. Read moresource§impl<T: Copy + DivAssign, U> DivAssign<T> for Point3D<T, U>
impl<T: Copy + DivAssign, U> DivAssign<T> for Point3D<T, U>
source§fn div_assign(&mut self, scale: T)
fn div_assign(&mut self, scale: T)
/=
operation. Read moresource§impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point3D<T, U>
impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Point3D<T, U>
source§fn mul_assign(&mut self, scale: Scale<T, U, U>)
fn mul_assign(&mut self, scale: Scale<T, U, U>)
*=
operation. Read moresource§impl<T: Copy + MulAssign, U> MulAssign<T> for Point3D<T, U>
impl<T: Copy + MulAssign, U> MulAssign<T> for Point3D<T, U>
source§fn mul_assign(&mut self, scale: T)
fn mul_assign(&mut self, scale: T)
*=
operation. Read moresource§impl<T, U> PartialEq for Point3D<T, U>where
T: PartialEq,
impl<T, U> PartialEq for Point3D<T, U>where
T: PartialEq,
source§impl<T: SubAssign, U> SubAssign<Size3D<T, U>> for Point3D<T, U>
impl<T: SubAssign, U> SubAssign<Size3D<T, U>> for Point3D<T, U>
source§fn sub_assign(&mut self, other: Size3D<T, U>)
fn sub_assign(&mut self, other: Size3D<T, U>)
-=
operation. Read moresource§impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Point3D<T, U>
source§fn sub_assign(&mut self, other: Vector3D<T, U>)
fn sub_assign(&mut self, other: Vector3D<T, U>)
-=
operation. Read more